
CS3210 Parallel Computing
Processes
� Time slicing: Same core shared by multiple processes

Process State Graph

9[CS3210 - AY1819S1 - L02]
� fork() – useful when child relies on parent’s data

� Disadvantages: creation of new process is costly (all data
structures must be copied), communication costly (goes
through the OS)

Threads
� User-level: OS is unaware – fast context switching, but

cannot map to different execution resources (no
parallelism), blocking I/O will block all threads

� Kernel: OS is aware

� Mapping:
Many-to-one: All user-level threads mapped to one process,
thread library is responsible for scheduling
One-to-one: Each user-level thread is mapped to exactly
one kernel thread, no library scheduler needed
Many-to-many: Library scheduler assigns user-level threads
to a set of kernel threads, library may move user threads to
different kernel threads during program execution

� Number of threads should be suitable to parallelism degree
of application, suitable to available parallelism resources,
not too large to keep overheads small

Synchronization
� Race condition: two concurrent threads access a shared

resource without any synchronization

� Critical section (CS) requirements:
Mutual exclusion: If one thread is in CS, then no other is
Progress: If thread T is not in CS then T cannot prevent
other threads from entering CS; threads in CS will
eventually leave it
Bounded wait: All waiting threads will eventually enter
Performance: Overhead of entering/exiting CS is small
w.r.t. work being done within it
Safety property: Mutual exclusion
Liveness property: Progress, Bounded wait
Performance requirement: Performance

� Locks: can spin (spinlock) or block (mutex)
Software lock:
- either use hardware atomics (test-and-set) or
disable/enable interrupts
- give up CPU: call yield() or sleep() instruction

� Semaphores: Wait()/P() and Signal()/V()
- mutex sem. (binary sem.) or counting sem. (general sem.)
- semaphores can be signalled by different thread – no
connection to data being controlled

� Monitor: allows threads to have both mutual exclusion
and the ability to wait (block) for a certain condition to
become true (implemented using mutex + cond. variable)

� Condition variable: supports three operations:
Wait: release monitor lock and blocks

(Condition variables have wait queues too)
Signal: wake one waiting thread
Broadcast: wake all waiting threads

� Barrier: blocks until specified number of threads arrive

� Starvation: process is prevented from making progress
because some other process has the resources required, e.g.:
- a high priority process always prevents low priority
process from using CPU
- one thread always beats another to acquire lock

� Deadlock: amongst a set of processes, every process is
waiting for an event that can be caused only by another
process in the set
Deadlock can exist iff all four conditions hold:
1. mutual exclusion (at least one non-shareable resource)
2. hold and wait (at least one process holding resource but
waiting for another resource)
3. no preemption (CS cannot be aborted externally)
4. circular wait (there must exist a set of processes
{P1, . . . , Pn} such that ∀i, Pi is waiting for P(i+1)%n

Dealing with deadlock:
- Ignore
- Prevent (make it impossible for deadlock to happen)
- Avoid (control resource allocation)
- Detect & Recover (look for a cycle in dependencies)

� Producer-consumer with finite buffer:

Producer-consumer with Finite Buffer

Producer
 event = waitForEvent ()
 spaces.wait ()
 mutex.wait ()

 buffer.add (event)
 mutex.signal ()
 items.signal ()

Consumer
 items.wait ()
 mutex.wait ()

 event = buffer.get ()
 mutex.signal ()
 spaces.signal ()
 event.process ()

57[CS3210 - AY1819S1 - L02]

� Lightswitch: lock/unlock system to acquire another
semaphore if there are nonzero threads in CS (implemented
with private mutex and counter)

� Reader-writer without writer starvation:

No-starve Readers-writers

Writers
 turnstile.wait ()

 roomEmpty.wait ()
 # critical section for writers

 turnstile.signal ()
 roomEmpty.signal ()

Readers
 turnstile.wait ()
 turnstile.signal ()
 readSwitch.lock (roomEmpty)

 # critical section for readers
 readSwitch.unlock (roomEmpty)

62[CS3210 - AY1819S1 - L02]

Parallel Computing Platforms
� Execution time:

CPU Time = Seconds
Program = Instructions

Program × Cycles
Instruction ×

Seconds
Cycle

� Levels of Parallelism Bit: word size
Instruction: execute instructions in parallel:
- Pipelining (parallelism across time)
- Superscalar (parallelism across space): duplicate pipeline
(scheduling can be dynamic (hardware) or static (compiler))
Thread: hardware support for multiple thread contexts
(PC, registers, etc), e.g. simult. multithreading (SMT)
Process: independent memory space, use IPC mechanisms
Processor: multiple processors

� Thread level multithreading implementations:
switch after each instruction � fine-grained multithreading
switch on stalls � coarse-grained multithreading
- switch after predefined timeslice � timeslice m.t.
- switch when proc. wait for event � switch-on-event m.t.
- sched. inst. from diff threads in same cycle � simult. m.t.

Architectures

� Flynn’s Taxonomy: SISD, SIMD, MISD, MIMD

- MISD: no actual implementation
- SIMD+MIMD: Stream processor (e.g. NVIDIA GPUs)

� Memory organization:
Distributed-Mem. (Multicomputers) �

Distributed-Memory Systems

 Each node is an independent unit:
 With processor, memory and, sometimes, peripheral elements

 Physically distributed memory module:
 Memory in a node is private

 Data exchanges between nodes
 message-passing (more in later lectures)

Interconnection Network

Processor

Cache Memory

Processor

Cache Memory

Processor

Cache Memory

Processor

Cache Memory

Processor

Cache Memory

Processor

Cache Memory

[CS3210 - AY1819S1 - L3] 30

cannot directly access other mem
Shared-Mem. (Multiprocessors) �

Shared Memory System

 Parallel programs / threads access memory
through the shared memory provider:
 which maintain the illusion of shared memory

 Program is unaware of the actual hardware
memory architecture

 Data exchanges between nodes
 shared variables (more in later lectures)

31[CS3210 - AY1819S1 - L3]

Memory Memory Memory Memory

Program Program Program

Shared Memory Provider

User Program

Additional Layer

Hardware
Memory- Uniform Memory Access (UMA)

- memory latency same for every processor
- Non-Uniform Memory Access (NUMA)

- physically dist. mem. mapped to shared addr. space
- Cache coherent NUMA (ccNUMA):

ccNUMA

 Cache Coherent Non Uniform Memory
Access
 Each node has cache memory to reduce

contention

Memory Memory Memory Memory

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Interconnection Network

[CS3210 - AY1819S1 - L3] 38

each node has cache memory that
keeps a consistent memory image for all processors

- Cache-only Memory Access (COMA) �

COMA

 Cache Only Memory Architecture
 Each memory block works as cache memory
 Data migrates dynamically and continuously

according to the cache coherence scheme

Interconnection Network

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

[CS3210 - AY1819S1 - L3] 40

- data migrates dynamically
Hybrid (Distributed-shared mem.)

� Advantages/Disadvantages of shared memory:
- no need to partition code/data, no need to physically
move data among processors � efficient communication)
- but special synchronization constructs are required, and
lack of scalability due to contention

� Multicore architecture:
Hierarchical design: multiple caches,

Hierarchical Design
 Multiple cores share multiple caches

 Cache size increases from the leaves to the root

 Each core can have a separate L1 cache and shares the
L2 cache with other cores

 All cores share the common
external memory

 Usages
 Standard desktop
 Server processors
 Graphics processing units

L3

L2

L1

[CS3210 - AY1819S1 - L3] 47

slower cache shared by more cores
Pipelined design: same computation

Pipelined Design
 Data elements are processed by multiple

execution cores in a pipelined way

 Useful if same computation steps have to be
applied to a long sequence of data elements
 E.g. network processors used in

routers and graphics processors

[CS3210 - AY1819S1 - L3] 49

steps to be applied on sequence of data
Network-based design: cores and their local caches and
memories are connected via an interconnection network

Parallel Programming Models

Program Parallelization: Steps
 3 main steps:

 Decomposition of the computations

 Scheduling (assignment of tasks
to processes (or threads))

 Mapping of processes (or threads) to
physical processors (or cores)

6[CS3210 - AY18/19S1 - L04]

Sequential
Algorithm

Tasks

decompose

Processes
or Threads

schedule

Physical Cores
& Processors

map

� Program Parallelization Steps
Decomposition: num. tasks ≥ num. cores;

task size >> parallelism overhead
Scheduling: find an efficient task execution order;
load balancing among tasks; minimize shared
memory access or communicaton operations
Mapping: focus on performance: equal utilization and
minimal communication between processors

Decomp. and scheduling can be static (compile-time or
program start) or dynamic (during program execution)

� Types of parallelization
Instruction: instructions executed in parallel unless
inhibited by data dependencies:
- Flow (true) dependency (read-after-write)
- Anti-dependency (write-after-read)
- Output dependency (write-after-write)
Loop: indep. iterations run in parallel (e.g. OpenMP for-loop)
Data: same op. applied to diff. data in parallel (e.g. SIMD,
data partitioning into ranges)
Task (functional parallelism): diff tasks in parallel

� Task dependence graph: DAG of tasks and dependencies
Critical path length: length of longest path

Degree of concurrency = total work
critical path length

� Representation of parallelism:
Implicit parallelism:
- Automatic: compiler automatically decomp. & schedule
- Functional programming: side-effect-free
Explicit parallelism:
- Implicit scheduling: OpenMP
- Explicit scheduling:

- Implicit mapping: BSPLib
- Explicit mapping:

- Implicit communication & synchronization: Linda
- Explicit comm. & synchronization: MPI, pthread

� Parallel programming patterns:
Fork–Join: explicit fork()/join() to work in parallel
Parbegin–Parend: specify sequence of statements to be
executed in parallel (e.g. OpenMP for-loop)
SIMD: same instruction operating on different data
SPMD: same program on diff. processors & data (e.g. MPI)
Master–Slave: master assigns work to slaves
Client–Server: MPMD model where server computes
requests from multiple client tasks concurrently (can use
multiple threads for the same request); a task can generate
requests to other tasks (client role) and process requests
from other tasks (server role); used in heterogeneous
systems e.g. cloud & grid computing
Task Pools: num. threads is fixed; during processing of a
task, new tasks can be generated and inserted into task
pool; useful for non-fixed task size, must synch. pool access
Producer–Consumer: shared data buffer/queue
Pipelining: stream parallelism (a form of functional parall.)

� Data distribution:
Blockwise: for homogeneous load over data structure
Cyclic: for inhomogeneous load, to improve load balancing
Block-cyclic: reduce overhead for cyclic but keep its benefits
2D arrays: either group row-wise/column-wise or apply
data distribution on both dimensions (checkerboard)

� Information exchange:
Shared variables: used for shared address space
- need to synchronize (e.g. mutex) to avoid race condition
(computation result depends on execution order of threads)
- each thread might also have private variables
Communication operations: used for distributed addr. space
- dedicated (explicit) communication operations

Performance of Parallel Systems
� Goals: small response time vs high throughput

� user CPU time = Ncycle × time per cycle
user CPU time = num. inst.× avg. cycles per inst. (CPI) × time per cycle
- num. inst. and CPI are also compiler-dependent
Refinement with memory access time (one-level cache):
user CPU time = (Ncycle +Nmm cycle)× time per cycle
(where Nmm cycle = num. addn cycles due to memory access
Nmm cycle = Nread cycle +Nwrite cycle

Nread cycle = Nread op ×Rateread miss ×Nmiss cycles

� Average memory access time:
Tread access = Tread hit +Rateread miss × Tread miss

� Benchmarks: SPECint, SPCfp, SPECjvm2008, NAS

� Parallel execution time p := num. processors;
n := problem size; Tp(n) := execution time (end− start)
Cost: processor-runtime product; Cp(n) = p× Tp(n)
Cost-optimal par. prog. has same cost as fastest seq. prog.

Speedup: Sp(n) :=
Tbest seq(n)

Tp(n)
; theoretically Sp(n) ≤ p

Superlinear speedup: Sp(n) > p (cache locality, early term., etc)
Difficulties with measuring speedup: best seq. alg. may not
be known; algorithm with optimum asymptotic complexity
is slower in practice; seq. alg. implementation is complex

Efficiency: Ep(n) :=
Tbest seq(n)

Cp(n)
=

Sp(n)
p ; ideal efficiency = 1

� Amdahl’s Law: Constant unparallelizable fraction of
algorithm then: Sp(n) ≤ 1

f (limp→∞ Sp(n) = 1
f)

- f (0 ≤ f ≤ 1) is the sequential fraction of algorithm
- also known as fixed-workload performance
- rebuttal: in many cases f is non-const, dependent on n

� Gustafson’s Law: Constant execution time for sequential
part then Sp(n) ≤ p (limn→∞ Sp(n) = p)
- const exec. time of seq. part with increasing problem size

� Grosch’s Law (rebuttable): the speed of a computer is
proportional to the square of cost � bigger processor better

� Minksy’s Conjecture (rebuttable): the speedup of a
parallel computer increases as the logarithm of num. of
processing elements � large-scale parallelism unproductive

Coherence & Consistency
� Write policy:

Write-through: immediately transferred to main memory
Write-back: dirty bit, only transfer on cache replacement

� Cache coherence definitions:
1: P write to X, n.f.w., then read from X – should get same value
2 (Write Propagation): P1 write to X, no further write to
X, then P2 read from X – should get same value
3 (Write Serialization): Any processor write V1 to X, any
processor then write V2 to X – all processors should never
read X as V2 then later as V1 (i.e. writes seen in same order)

� Hardware cache coherence tasks:
- track sharing status and update shared cache line
Snooping based: no centralized directory, cache monitors
(snoops) on the bus to update its cache line
Directory based: sharing status kept at centralized location,
common with NUMA

� Memory consistency: Each processor has consistent view
of memory through its local cache
Sequential consistency (SC): all reads/writes are serializable
Relaxed consistency: read may be reordered before write of
different variable
- Total store ordering (TSO): writes seen by all other
processors at the same time, in instruction order
- Processor consistency (PC): writes seen by each processor
in instruction order (like N×N pipes)
- Partial store ordering (PSO): writes seen by all other
processors at the same time, out of instruction order (i.e.
write-write reorder of different variables can happen)

Interconnections
� Major types:

Direct (or Static, Point-to-Point):

Topology: Major Type

PE

PE

PE

PE

PE
PE

PE

PE

MEM

MEMInterconnect

• Also known as Static or
Point-to-Point

• Each endpoint is a PE

Direct
Interconnection

• Also known as Dynamic
• Interconnect is formed

by switches

Indirect
Interconnection

[CS3210 - AY1819S1 - L06] 61

each endpoint is a processing element
Indirect (or Dynamic): interconnect formed by switches

� Embedding: Can embed G′ into G ⇐⇒ ∃σ : V ′ → V s.t.
σ is injective, and if (u, v) ∈ E′ then (σ(u), σ(v)) ∈ E

• Direct interconnections:

n nodes degree diameter
edge
conn.

bisect.

complete graph n− 1 1 n− 1
(
n
2

)2
linear array 2 n− 1 1 1

ring 2
⌊
n
2

⌋
2 2

d-d mesh (n = rd) 2d d (r − 1) d n
d−1
d

d-d torus (n = rd) 2d d
⌊
r
2

⌋
2d 2n

d−1
d

k-d hypercube (n = 2k) log n log n log n n
2

k-d CCC (n = k2k) 3 2k−1+
⌊
k
2

⌋
3 n

2k

complete bin. tree (n=2k−1) 3 2 log n+1
2 1 1

k-ary d-cube (n = kd) 2d d
⌊
k
2

⌋
2d 2kd−1

- XY-routing (2D mesh): move in X-dir until Xsrc = Xdest then move in Y -dir
- E-cube routing (hypercube): compare coord. tuples of src and
dest; start with MSB or LSB, take link to correct bit if bit differs

� Topology Metrics:
Diameter: max dist. between any two nodes
- small diameter � small distance for message transmission
Degree: max node degree in graph
- small degree � small node hardware overhead

Bisection width: min edges removed to divide network into equal halves
- determines max node messaging rate network can support
- required link data rate = num. nodes

2 × node messaging rate
bisection width

Node connectivity: min num. nodes that must fail to
disconnect network (determines robustness)
Edge connectivity: min num. edges that must fail to disconnect network
(determines num. indep. paths between any pair of nodes)

� Indirect interconnections:
Bus network: only one pair of

Bus Network

 A set of wires to transport data from a sender to a receiver
 Only one pair of devices can communicate at a time
 A bus arbiter is used for the coordination
 Typically used for a small number of processors

78[CS3210 - AY1819S1 - L06]

devices can communicate at a time
Crossbar network: switch state:

Crossbar Network
 A n × m crossbar network has n inputs and m outputs

 Two states of a switch: straight or direction change

 Hardware is costly (n x m switches) small number of processors

79[CS3210 - AY1819S1 - L06]

Straight state

n x m crossbar network

Direction change state

straight or direction change

� Multistage switching networks:

8× 8 butterfly 8× 8 baseline 16× 16 omega

Omega network: stage 0, 1, 2, 3
- n/2 switches per stage
- switch (α, i) [α=pos. of switch within stage (e.g. ∈ [0, 8));
i=stage number] has edge to switch (β, i+ 1) where
β ∈ {α by cyclic left shift, α by cyclic left shift + inversion of LSB}
XOR-tag routing for omega network:
Let T = sourceID⊕ destID (e.g. sourceID, destID ∈ [0, 16))
At stage k: go straight if kth bit of T is 0, crossover otherwise

� Evaluate indirect interconnections by: cost (num.
switches/links), num. allowable concurrent connections

� Routing algorithm classification:
Minimal/Non-minimal: whether shortest path is always chosen
Adaptive/Deterministic: adjust by network status/congestion

Message Passing
� Loosely synchronous: processes synchronize to perform

interactions; apart from that tasks execute fully asynchronously

� Protocol possibilities:
Buffered: uses a temporary buffer (instead of tx. directly to network)
Blocking: original array can be reused after function returns
- non-buffered blocking operation misuse can cause idling/deadlocks
- idling due to mismatch in timing between sender and receiver
- non-blocking op. hides communication overhead, and
usually accompanied by a check-status op.
- blocking send can pair with non-blocking recv and vice-versa
Synchronous (MPI only): op. does not complete until both
sender and receiver have started communication op.

� MPI message: Data: buffer, count, datatype;
Envelope: src/dst, tag, communicator
- Group = set of processors
- Communicator = communication domain for one or two
groups of processes

- Intra-communicators: communicate within single group
- Inter-communicators: communicate between two groups
- MPI COMM WORLD is an intra-communicator

� Virtual topologies: e.g. Cartesian, Graph – easier to
address neighbours or by 2D pair of coords

� “Proc. consistency”: order not guaranteed with more
than two processes; but same src to same dst � in order

� Deadlock can happen (xchging data between 2 proc) when:
- Two processes have blocking recv before send
- Two processes have unbuffered blocking send before recv
Instead, even proc should send while odd proc recv first

� Collective Communication

Multi-Broadcast

 Each processor sends the same data block to every other
processor
 No root processor

 Data blocks are collected in rank order
24[CS3210 - AY1819S1 - L07]

P1 2

P2 4

P3 6

P4 8

P1 2 4 6 8

P2 2 4 6 8

P3 2 4 6 8

P4 2 4 6 8

Multi

Broadcast

Multi-accumulation

 Each processor provides for every other processor a
potentially different data block
 Data blocks for the same receiver are combined with a given

reduction operation
 No root processor

26[CS3210 - AY1819S1 - L07]

P1 1 2 3 4

P2 5 6 7 8

P3 9 10 11 12

P4 13 14 15 16

P1 28

P2 32

P3 36

P4 40

Multi

Accumulation

Single-accumulation (Gather with Reduction)

 Each processor provides a block of data with the same type
and size
 A reduction (binary, associative and commutative) operation is

applied element by element to the data blocks
 results in root processor

25[CS3210 - AY1819S1 - L07]

P1 2

P2 4

P3 6

P4 8

P1 20

P2 4

P3 6

P4 8

Single

Accumulation

Total Exchange

 Each processor provides for each other processor a
potentially different data block
 Effectively each processor executes a scatter operation
 No root processor

27[CS3210 - AY1819S1 - L07]

P1 1 2 3 4

P2 5 6 7 8

P3 9 10 11 12

P4 13 14 15 16

P1 1 5 9 13

P2 2 6 10 14

P3 3 7 11 15

P4 4 8 12 16

Total

Exchange

� Duality: same spanning tree can be used for both ops.

CUDA Programming
� Drawbacks of shader GPGPU (general purpose GPU):

- awkward programming interface unnecessarily dependent
on graphics pipeline - no scatter
- hard to transfer data from host to device
- no communication between threads
- coarse thread synchronization

� GPU architechure:
- multiple streaming
multiprocessors (SMs)
- SM consists of multiple
compute cores, memories, schedulers

� CUDA programming model:
- SPMD model
- transparently scales to arbitrary num. cores
- programmers focus on parallel algorithms
- enable heterogeneous systems (i.e. CPU+GPU)
- threads need not be completely independent – can share
results and memory accesses, atomic operations
- in same block: can use shared mem, barrier syncthreads
- each block assigned an SM and cannot migrate
- several blocks can reside concurrently on one SM
- register file partitioned among resident threads
- shared memory partitioned among resident blocks

� Execution mapping to architecture:
- SIMT (single instruction, multiple thread) execution model
- multiprocessor sched. & exec. threads in SIMT warps (32 threads)
- threads in a warp start tgt at same program address
- each warp executes one common instruction at a time
- scheduler groups threads with same exec. path in same warp

Memory
On/off
chip

Cached Access Scope Lifetime

Register On N/A

R/W
1 thread Thread

Local Off No

Shared On N/A

All
threads
in block

Block

Global
Off

No All
threads
+ host

Host
allocation

Constant
Yes R

Texture

- Constant memory – can only read one int32 per cycle
- Shared memory – divided into banks, diff. banks can be
accessed simultaneously

� Compilation:
- NVCC outputs C host code (to be compiled using another
compiler), and PTX code (interpreted at runtime)

� Device code restrictions: can only access GPU memory,
no varargs, no static variables, (old versions) no recursion

� Variable qualifiers:
- device : global memory, use cudaMemcpyToSymbol

- constant : constant (cached), use cudaMemcpyToSymbol

- shared : on-chip shared memory (very low latency)

� int atomicCAS(int* address, int expected, int

newval); (returns oldval, overloads for uint and ull avail.)

� Optimization strategies:
- maximize par. exec. to expose maximum data parallelism
- optimize memory usage to maximize memory bandwidth
- optimize instruction usage to maximize instruction
throughput (e.g. avoid divergent warp, low-precision floats)

� Memory optimizations:
- minimize data transfer between host and device
- coalesce global mem access (simult. access to global
memory by threads in a half-warp can be coalesced into
single memory transactions of 32/64/128 bytes; require-
ments (alignment, random) based on compute capability)
- prefer shared mem to global mem where possible
- minimize shared mem bank conflicts

Parallel Algorithm Design
� Consider machine-independent issues first

Task/Channel model: task = code & data needed for comp-
utation; channel = message queue from one task to another

� Foster’s design methodology:
Partitioning of problem into small independent tasks
- Data-centric (domain decomposition): divide data into
pieces (≈ equal size), associate computations with data
- Computation-centric (functional decomposition): divide
computation into pieces, associate data with computations
Communication between tasks
- local comm.: task needs data from small number of other
tasks only (create channels illustrating data flow)
- global comm.: significant num. of tasks contribute data for
calculation (don’t create channels for them early in design)
Agglomeration: combine tasks to larger tasks
- reduce overheads (task creation + communication)
- (In MPI, usually one agglomerated task per processor)
Mapping of tasks to processors to maximize processor
utilization (place tasks on different processors) but
minimize inter-processor communication (place tasks that
communicate frequently on the same processor)
- done by OS for centralized multiprocessor
- done by user for distributed memory systems

Energy-Efficient Computing
� Heterogeneous computing:

- Programs: OpenMP+MPI, OpenMP+CUDA, MapReduce
- Systems:

- Inter-node: diff. CPU generations, brawny+wimpy
- Intra-node:

- Inter-chip: CPU+VPU (“vision”, AI accelerator), CPU+GPU
- Intra-chip: CPU+GPU, ARM big.LITTLE

Heterogeneity: more power-efficient
Functional heterogeneity: different ISA
Performance heterogeneity: same ISA, different speed

� Costs of computing: Higher performance � More/faster
computers � Power � Heat � Cooling � Space �
Money/Env. cost; Cooling � Power � Money/Env. cost

� Cloud computing:
- Characteristics: on-demand self-service, broad network
access, resource pooling, rapid elasticity, measured service
- Service models: SaaS (software), PaaS (platform), IaaS (infra.)
- Deployment models: private/community/public/hybrid clouds

� Virtualization: server/storage/network/services(e.g.DB)

� Power use effectiveness (PUE) = total energy used
energy used for processors

Increase energy efficiency by: - building custom servers
(minimize AC/DC conversions, remove unnecessary parts,
strategic positioning, decrease fan speed)
- control temp. of equipment (raise temp. to 26°C, manage
airflow, thermal modeling, hot/cold aisles, seawater cooling)

